Proteomic and lipidomics analyses of high fatty acid AhDGAT3 transgenic soybean reveals the key lipase gene associated with the lipid internal mechanism

Author:

Xu Yang11,Yan Fan11,Zong Yu11,Li Jingwen11,Gao Han11,Liu Yajing11,Wang Ying11,Zhu Youcheng11,Wang Qingyu11

Affiliation:

1. College of Plant Science, Jilin University, No.5333 Xi’an Road, Changchun City, 130062, China.

Abstract

Vegetable oil is one of the most important components of human nutrition. Soybean (Glycine max) is an important oil crop worldwide and contains rich unsaturated fatty acids. Diacylglycerol acyltransferase (DGAT) is a key rate-limiting enzyme in the Kennedy pathway from diacylglycerol (DAG) to triacylglycerol (TAG). In this study, we conducted further research using T3 AhDGAT3 transgenic soybean. A high-performance gas chromatography flame ionization detector showed that oleic acid (18:1) content and total fatty acid content of transgenic soybean were significantly higher than those of the wild type (WT). However, linoleic acid (18:2) was much lower than that in the WT. For further mechanistic studies, 20 differentially expressed proteins (DEPs) and 119 differentially expressed metabolites (DEMs) were identified between WT (JACK) and AhDGAT3 transgenic soybean mature seeds using proteomic and lipidomics analyses. Combined proteomic and lipidomics analyses showed that the upregulation of the key DEP (lipase GDSL domain-containing protein) in lipid transport and metabolic process induced an increase in the total fatty acid and 18:1 composition, but a decrease in the 18:2 composition of fatty acids. Our study provides new insights into the deep study of molecular mechanism underlying the enhancement of fatty acids in transgenic soybeans, especially oleic acid and total fatty acid, which are enhanced by over-expression of AhDGAT3.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3