Author:
Khanna O Shervan,Mufti Aftab A,Bakht Baidar
Abstract
To study systematically the role of each layer of steel reinforcement in conventionally reinforced deck slabs of girder bridges, a full-scale model was built of a 175 mm thick concrete deck slab on two steel girders with a center-to-center spacing of 2.0 m. The 12 m long deck slab was conceptually divided into four 3 m long segments, identified as segments A, B, C, and D. Segment A contained isotropic steel reinforcement in two layers, conforming to the requirements of the Ontario Highway Bridge Design Code (OHBDC). Segment B contained only the bottom layer of steel reinforcement. Segment C contained only the bottom transverse steel bars. Segment D contained only bottom transverse glass fibre reinforced polymer (GFRP) bars having the same axial stiffness, but 8.6 times the axial tensile strength, as those of the steel bars in segment C. Each segment of the deck slab was tested to failure under a central concentrated load, simulating the dual tire footprint of 250 × 500 mm dimension of a typical commercial vehicle. All segments failed in the punching shear mode. The failure loads for the four segments were found to be 808, 792, 882, and 756 kN, respectively; these failure loads are similar in magnitude to that of a 175 mm thick steel-free deck slab with steel straps having nearly the same cross-sectional area per metre length of the slab as those of the bottom transverse steel bars in the first three segments. The tests on the four segments of the full-scale model have confirmed that (i) only the bottom transverse reinforcement influences the load carrying capacity of a reinforced concrete deck slab and (ii) the stiffness of the bottom transverse reinforcement, rather than its strength, is of paramount importance.Key words: arching, deck slab, FRP, shake down, slab-on-girder bridge.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献