Inorganic carbon acquisition by Chlamydomonas acidophila across a pH range

Author:

Spijkerman Elly

Abstract

Chlamydomonas acidophila Negoro had a higher maximum growth rate upon aeration with 5% CO2 (v/v) than in nonaerated conditions at an external pH above 2. In medium with a pH of 1.0 or 2.0, a decrease in the maximum growth rate was observed upon CO2 aeration in comparison with nonaerated conditions. At both very low and very high external pH conditions, an induction of external carbonic anhydrase was detected; this being more pronounced in CO2-aerated cells than in nonaerated cells. It is therefore suggested that the induction of carbonic anhydrase is part of a stress response in Chlamydomonas acidophila. Comparison of some physiological characteristics of Chlamydomonas acidophila acclimated at pH 2.65 and at pH 6.0, revealed that CO2 aeration increased gross maximum photosynthesis at both pHs, whereas respiration, light acclimation, and photoinhibition were not effected. At pH 2.65, Chlamydomonas acidophila was found to have a carbon-concentrating mechanism under nonaerated conditions, whereas it did not under CO2-aerated conditions at pH 6. The affinity for CO2 use in O2 production was not dependent on CO2 aeration, but it was much lower at pH 6 than it was at pH 2.65. CO2 kinetic characteristics indicate that the photosynthesis of Chlamydomonas acidophila in its natural environment is not limited by inorganic carbon.Key words: Chlamydomonas acidophila, CCM, external carbonic anhydrase, photosynthesis, growth rates, pH stress, CO2.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3