Experimental investigation of block shear failure in coped steel beams

Author:

Franchuk Cameron R,Driver Robert G,Grondin Gilbert Y

Abstract

Relatively few tests have been conducted to determine the block shear capacity and behaviour of coped steel beam connections. Furthermore, design standards are inconsistent in the way they treat this failure mode and may predict capacities significantly higher than those determined experimentally. To address these issues, 17 full-scale tests were conducted on coped wide-flange beams. Parameters considered in the study include beam end rotation, end and edge distances, and bolt layout. Many of these parameters had not been systematically investigated prior to this research, and the effect of end rotation, i.e., the rotation at the connection due to flexural beam action, had not been examined. It is found that few of these parameters significantly affect the connection capacity, apart from the associated changes in net tension and gross shear areas. Following the laboratory tests, capacity design equations outlined in Canadian, American, European, and Japanese standards were examined. Tests-to-predicted ratios for each standard were calculated and compared. It was found that none of these standards accurately and consistently predict block shear capacity, especially when considering two-line connections.Key words: beams, block shear, bolts, connections, end rotation, rupture, shear, steel, tension, yield.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Buckling and post-buckling behavior of top flange coped I-beams with slender web panels;Thin-Walled Structures;2024-05

2. Behaviour and design of gusset plates in steel structures: A state-of-the-art review;Journal of Constructional Steel Research;2023-12

3. Block Shear Strength of Coped Beam Connections with Double Bolt Lines;Journal of Structural Engineering;2022-01

4. Strength Determination and Fracture Characteristics of Bolted Connections;Journal of Structural Engineering;2021-09

5. Behaviour of Block Shear Failure in Different Connections;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2019-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3