Abstract
The problem of the motion of test particles is studied in a theory of gravitation based on a nonsymmetric gμν. According to the conservation laws the test particles can follow two kinds of geodesies, depending on the definition of a local inertial frame in the theory. One of these geodesies is nonmaximal and leads to a timelike and null world line complete space when a new parameter l, that occurs as a constant of integration in the spherically symmetric, static solution of the field equations, satisfies [Formula: see text]. In the theory, the parameter [Formula: see text] where N is the number of fermions in a system and a is a new universal coupling constant that satisfies [Formula: see text]. The physical implications of l and the associated conservation law of fermion number is discussed in detail.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献