Author:
Craven Pamela A.,Hayasaka Steven S.
Abstract
Actively growing Zostera marina plants had a greater rhizosphere inorganic phosphate solubilizing potential than dormant plants. Rhizosphere bacteria that were capable of calcium phosphate solubilization were obligate aerobes and numbered approximately 4 × 108 colony-forming units/g dry weight root. Bacterial isolates solubilized calcium phosphate when cultured with glucose as the sole carbon and energy source but not when cultured with amino acids. Both calcium phosphate (hydroxyapatite) and glucose were found in sea grass bed sediment. Acetic acid was also detected from roots plus clinging sediment, from sediment, and from cultured bacterial isolates in a glucose-supplemented medium. The minimum concentration of acetic acid that showed detectable solubilization of calcium phosphate was 10−5 M. It is suggested that acetic acid, a product of glucose metabolism in the rhizosphere flora, is responsible for phosphate solubilization in the environment.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献