The mechanism of [3H]noradrenaline release by histamine and its analogs from the rat vas deferens

Author:

Boudreau N. J.,Vohra M. M.

Abstract

In this study the mechanism by which histamine and H1 and H2 agonists evoked an overflow of radioactivity from rat vasa deferentia preloaded with [3H]noradrenaline was investigated. The overflow evoked by the various agonists was unaffected by the presence of such receptor antagonists as propranolol, phentolamine, cimetidine, or scopolamine. On the other hand, the overflow evoked by all agonists except dimaprit was inhibited by mepyramine and by two well-known neuronal uptake inhibitors, cocaine and desipramine. The inhibition by mepyramine has been attributed to its effect on the neuronal uptake process. Metabolic profile studies showed that 3,4-dihydroxyphenylglycol (DOPEG) was the major constituent in the evoked overflow caused by histamine, 2-methylhistamine, 4-methylhistamine, and dimaprit and that the overflow evoked by 2-pyridylethylamine and 2-thiazolylethylamine consisted predominantly of unchanged noradrenaline. Based on these findings, it is concluded that all of the agonists tested evoke noradrenaline release intraneuronally by entering the adrenergic nerve terminals. While dimaprit might enter by passively diffusing into the adrenergic nerves, other agonists seem to use the neuronal uptake process. Noradrenaline released intraneuronally is subsequently degraded by neuronal monoamine oxidase to form DOPEG. However, there are qualitative and quantitative differences in the metabolic profile of the overflow evoked by various agonists. It is suggested that these differences could arise from their additional properties, such as their effect on the neuronal uptake process and (or) their ability to act as substrate for neuronal monoamine oxidase.Key words: noradrenaline, vas deferens, histamine, histamine H1 and H2 agonists.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3