Fracture of the dimorphic fruits of Aethionema arabicum (Brassicaceae)

Author:

Arshad Waheed1,Marone Federica2,Collinson Margaret E.3,Leubner-Metzger Gerhard14,Steinbrecher Tina1

Affiliation:

1. School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.

2. Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland.

3. Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.

4. Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic.

Abstract

Fruits exhibit highly diversified morphology, and are arguably one of the most highly specialised organs to have evolved in higher plants. Fruits range in morphological, biomechanical, and textural properties, often as adaptations for their respective dispersal strategy. While most plant species possess monomorphic (of a single type) fruit and seeds, here we focus on Aethionema arabicum (L.) Andrz. ex DC. (Brassicaceae). Its production of two distinct fruit (dehiscent and indehiscent) and seed types on the same individual plant provides a unique model system with which to study structural and functional aspects of dimorphism. Using comparative analyses of fruit fracture biomechanics, fracture surface morphology, and internal fruit anatomy, we reveal that the dimorphic fruits of A. arabicum exhibit clear material, morpho-anatomical, and adaptive properties underlying their fracture behaviour. A separation layer along the valve–replum boundary is present in dehiscent fruit, whereas indehiscent fruit have numerous fibres with spiral thickening, linking their winged valves at the adaxial surface. Our study evaluates the biomechanics underlying fruit-opening mechanisms in a heteromorphic plant species. Elucidating dimorphic traits aids our understanding of adaptive biomechanical morphologies that function as a bet-hedging strategy in the context of seed and fruit dispersal within spatially and temporally stochastic environments.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3