Numerical study of parameters influencing the response of flexible retaining walls

Author:

Vaziri Hans H

Abstract

A practical numerical model is described for analysis of flexible retaining walls. In terms of capabilities, the model fits between traditional limit equilibrium methods and full finite element approaches; it overcomes many of the limitations associated with the former but is not equipped with the versatility offered by the latter. Using an approach similar to that adopted in boundary-element based models, the wall stiffness is represented by a series of elastic beam elements whose stiffness is combined with that of the prestressed struts and the soil to form, the overall stiffness matrix. The stiffness matrix of the soil is obtained by inversion of flexibility matrices generated by interpolation and sealing of flexibility matrices calculated for a simplified soil model using finite element methods. The soil behaves linearly elastically, as long as the pressures correspond to stress levels lying between the limits. Where the lateral displacement of the wall corresponds to a pressure outside of these allowable limits, correction forces are added until the resulting pressures are within the active or passive pressures. Arching is permitted by considering the forces acting on the wall compared with the forces consistent with possible failure surfaces within the soil. Other features that can be accomodated by the model include struts, variations in water table, and the effects of surcharges. The proposed model has been shown to capture the displacement, anchor loads, and lateral stresses for several field problems. Based on these studies and other field applications of the model a number of points have been observed that are of practical interest; these points are separately listed. Key words: numerical analysis, retaining wall, anchor, arching, soil–structure interaction, deflection.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3