Combining multiple Bayesian data analyses in a sequential framework for quantitative fisheries stock assessment

Author:

Michielsens Catherine G.J.,McAllister Murdoch K,Kuikka Sakari,Mäntyniemi Samu,Romakkaniemi Atso,Pakarinen Tapani,Karlsson Lars,Uusitalo Laura

Abstract

This paper presents a sequential Bayesian framework for quantitative fisheries stock assessment that relies on a wide range of fisheries-dependent and -independent data and information. The presented methodology combines information from multiple Bayesian data analyses through the incorporation of the joint posterior probability density functions (pdfs) in subsequent analyses, either as informative prior pdfs or as additional likelihood contributions. Different practical strategies are presented for minimising any loss of information between analyses. Using this methodology, the final stock assessment model used for the provision of the management advice can be kept relatively simple, despite the dependence on a large variety of data and other information. This methodology is illustrated for the assessment of the mixed-stock fishery for four wild Atlantic salmon (Salmo salar) stocks in the northern Baltic Sea. The incorporation of different data and information results in a considerable update of previously available smolt abundance and smolt production capacity estimates by substantially reducing the associated uncertainty. The methodology also allows, for the first time, the estimation of stock–recruit functions for the different salmon stocks.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3