Effects of geographic information system vector–raster–vector data conversion on landscape indices

Author:

Bettinger Pete,Bradshaw Gay A.,Weaver George W.

Abstract

The effects of geographic information system (GIS) data conversion on several polygon-and landscape-level indices were evaluated by using a GIS vegetation coverage from eastern Oregon, U.S.A. A vector–raster–vector conversion process was used to examine changes in GIS data. This process is widely used for data input (digital scanning of vector maps) and somewhat less widely used for data conversion (output of GIS data to specific formats). Most measures were sensitive to the grid cell size used in the conversion process. At the polygon level, using the conversion process with grid cell sizes of 3.05, 6.10, and 10 m produced relatively small changes to the original polygons in terms of ln(polygon area), ln(polygon perimeter), and 1/(fractal dimension). When grid cell size increased to 20 and 30 m, however, polygons were significantly different (p < 0.05) according to these polygon-level indices. At the landscape level, the number of polygons, polygon size coefficient of variation (CV), and edge density increased, while mean polygon size and an interspersion and juxtaposition index (IJI) decreased. The youngest and oldest age-class polygons followed the trends of overall landscape only in terms of number of polygons, mean polygon size, CV, and IJI. One major side effect of the conversion process was that many small polygons were produced in and around narrow areas of the original polygons. An alleviation process (referred to as the dissolving process) was used to dissolve the boundaries between similarly attributed polygons. When we used the dissolving process, the rate of change for landscape-level indices slowed; although the number of polygons and CV still increased with larger grid cell sizes, the increase was less than when the dissolving process was not used. Mean polygon size, edge density, and fractal dimension decreased after use of the dissolving process. Trends for the youngest and oldest age-class polygons were similar to those for the total landscape, except that IJI was greater for these age-classes than for the total landscape.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3