Dynamic response of a beam on a frequency-independent damped elastic foundation to moving load

Author:

Kim Seong-Min,Roesset Jose M

Abstract

The dynamic displacement response of an infinitely long beam on an elastic foundation with frequency-independent linear hysteretic damping subjected to a constant amplitude or a harmonic moving load was investigated. The advance velocity was assumed to be constant. Formulations were developed in the transformed field domain using (i) a Fourier transform in moving space for moving loads of constant amplitude, (ii) a double Fourier transform in time and moving space for moving loads of arbitrary amplitude variation or to include the transient due to the initial application of the load for moving harmonic loads, and (iii) a Fourier transform in moving space for the steady-state response to moving harmonic loads. The effects of velocity, damping, loaded length, and load frequency on the deflected shape and the maximum displacement were investigated. The critical (resonant) velocities and frequencies were obtained by analyses, and expressions to find them were suggested.Key words: beam on elastic foundation, damping, Fourier transform, frequency, harmonic load, moving load, transformed field, velocity.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3