Effects of mitogen-activated protein kinases on nuclear protein importThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell.

Author:

Faustino Randolph S.1,Rousseau Delphine C.1,Landry Melanie N.1,Kostenuk Annette L.1,Pierce Grant N.1

Affiliation:

1. Cell Biology Laboratory, Division of Stroke and Vascular Disease, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, 351 Tache Ave, Winnipeg, MB R2H 2A6, Canada.

Abstract

ERK-2 MAP kinase activation induces inhibitory effects on nuclear protein import in vascular smooth muscle cells. The mechanism and characteristics of this effect of ERK-2 were investigated. An unusual dose-dependent effect of ERK-2 on nuclear protein import was identified. At higher concentrations (1 μg/mL) of ERK-2, nuclear protein import was stimulated, whereas lower concentrations (0.04 μg/mL) inhibited import. Intermediate concentrations exerted intermediate effects. The stimulatory and inhibitory effects at the 2 different ERK-2 concentrations were observed in both conventional, permeabilized cell assays of nuclear protein import and with in situ microinjection of smooth muscle cells. The biphasic effects of ERK-2 on import were also found for the other 2 members of the MAPK family, p38 and JNK. RanGAP was identified by structural analysis as a candidate target protein responsible for mediating the effects of ERK-2. After pretreatment with high concentrations of ERK-2, RanGAP activity was significantly increased by ~50%. In contrast, low concentrations of ERK-2 significantly attenuated RanGAP activity. These results demonstrate that all 3 members of the MAPK family can alter nuclear protein import in opposite directions depending upon the concentration of ERK-2 used. RanGAP represents the MAP kinase target whereby nuclear transport can be stimulated or inhibited.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3