Production physiology and morphology of Populus species and their hybrids grown under short rotation. I. Clonal comparisons of 4-year growth and phenology

Author:

Ceulemans R.,Scarascia-Mugnozza G.,Wiard B. M.,Braatne J. H.,Hinckley T. M.,Stettler R. F.,Isebrands J. G.,Heilman P. E.

Abstract

Height and diameter growth, stem volume production, leaf phenology and leaf number, and number of branches of Populustrichocarpa Torr. & Gray, Populusdeltoides Bartr., and their F1 hybrids (P. trichocarpa × P. deltoides) were studied for 4 years in a research plantation in western Washington, United States. Twelve clones (three of each species and six of the hybrids) grew under a short-rotation silviculture regime in monoclonal plots at spacings of 1 × 1 m (10 000 stems/ha). Clones represented a north-south gradient within the geographic distribution of both the two North American poplar species and the parentage of the hybrid material. The results support earlier work by contributing additional evidence for the superiority of the hybrids. However, the relative hybrid superiority in these monoclonal plots was less pronounced than that found earlier in field trials with single-tree plots because of heightened intraclonal competition. After 4 years, mean estimated stem volume of the hybrids was 1.5 times that of P. trichocarpa and 2.3 times that of P. deltoides. Total tree height of the hybrids was 1.1 times that off. trichocarpa and 1.3 times that off. deltoides. Clonal variation was the dominant theme in height and diameter growth, stem volume productivity, time of bud break and bud set, tree mortality, and number of branches. Populustrichocarpa had the highest number of sylleptic branches, P. deltoides had the lowest, and hybrids were intermediate. Significant clone by replicate interactions were observed in height, diameter, and volume growth. Phenological traits, such as the dates of bud break and bud set, and the length of growing period only partly explained the observed differences in growth between the P. trichocarpa × P. deltoides hybrids and the parental species.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3