Novel toe driving for thin-walled piles and performance of fiberglass-reinforced polymer (FRP) pile segments

Author:

Sakr Mohammed,Naggar M Hesham El,Nehdi Moncef

Abstract

Despite the rapidly growing use of pile foundations, it is presently difficult to assure the integrity and uniformity of the cross-sectional area of cast-in-place piles when using normal concrete. Cavities and soil encroachments leading to soil pockets can jeopardize their load-bearing capacity. Moreover, corrosion in reinforced concrete and steel shell piles has been very costly, exceeding US$2 billion in annual repair costs in the United States alone. To address these two challenges, extensive research has been underway at the University of Western Ontario to develop novel technology for the construction of piles. Self-consolidating concrete (SCC), a material that flows under gravity and assures the integrity of piles, is cast into fiberglass-reinforced polymer (FRP) tubes that provide corrosion-resistant reinforcement. A toe driving technique was developed to install the empty FRP shells into the soil, and SCC is subsequently cast into the shells. Driving tests using this new technique were carried out on large-scale model FRP and steel pipe piles installed in dense dry sand enclosed in a pressure chamber. FRP–SCC and steel closed-end piles were also driven using conventional piling at the pile head. Static load tests were conducted on the various pile specimens under different vertical and horizontal confining pressures. The pile specimens were instrumented to investigate their dynamic behaviour under driving and their response to static compressive, uplift, and lateral loading. It is shown that the toe driving technique is very suitable for installing FRP piles in dense soils. Results from the driving tests and static load test indicate that FRP–SCC hybrid piles are a very competitive and attractive option for the deep foundations industry.Key words: FRP, self-consolidating concrete, piles, pile drivability, toe driving, axial load, uplift load, lateral load, large-scale modeling, shaft resistance, dense sand.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3