Ultrastructural and developmental alterations induced by Periconia circinata toxin in the root tip of sorghum

Author:

Arias Jonathan A.,Dunkle Larry D.,Bracker Charles E.

Abstract

Cytological and developmental effects induced by Periconia circinata toxin were examined to better understand the mechanism of action for this toxin. Roots of sorghum seedlings susceptible and resistant to P. circinata were incubated in 500 ng toxin/mL (treated) or water (controls). Root cap cells of resistant seedlings treated with the toxin were cytologically similar to those of controls, although the toxin caused a transient inhibition of mitosis in cells of the primary root tip. In outer root cap cells of susceptible seedlings treated for 0.25 h, hypersecretory activity was lost, secretory vesicles were fewer, and secretory product accumulated between the plasma membrane and cell wall. Also, inner root cap cells showed increased vacuolation. Longer treatments caused increased vacuolation, loss of starch, increased numbers of lipid bodies, pleomorphic amyloplasts, regularly stacked endoplasmic reticulum, apparent changes in the amounts of cytomembranes, dispersion of heterochromatin, and autolysis. Mitochondrial morphology was normal, but lesions in the tonoplast occurred before autolysis. The toxin also inhibited expansion and sloughing off of root cap cells and mitotic activity in the root tip. Stacked endoplasmic reticulum, nonhypersecretory dictyosomes, fewer secretory vesicles, increased vacuolation, reorganization of heterochromatin, and increased secretory product outside the protoplast were induced by P. circinata toxin and by cyanide. These data suggested that a cyanogenic compound is biologically active in cells treated with P. circinata toxin. Our results suggest that the toxin transiently affects resistant seedlings and in susceptible seedlings alters vacuolar expansion, secretory activity, and endomembrane flow, although other processes may also be affected.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3