Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide

Author:

Reid-Taylor Kara L,Chu Joseph WK,Sharom Frances J

Abstract

Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are proposed to interact preferentially with glycosphingolipids and cholesterol to form microdomains, which may play an important role in apical targeting and signal transduction. The objective of the present study was to investigate the interaction of the GPI-anchored protein Thy-1 with phospholipids and a glycosphingolipid. Purified Thy-1 was reconstituted into lipid bilayer vesicles of dimyristoyl-phosphatidylcholine (DMPC) alone or in combination with galactosylceramide (GC). The ability of Thy-1 to perturb the gel to a liquid-crystalline phase transition of DMPC was examined by differential scanning calorimetry. As the mole fraction of Thy-1 increased, the phase transition enthalpy, deltaH, declined. Analysis indicated that each molecule of Thy-1 perturbed over 50 phospholipids, suggesting that, in addition to the anchor insertion into the bilayer, the protein itself may interact with the membrane surface. Inclusion of 5% w/w GC in the bilayer resulted in a striking change in the interaction of Thy-1 with phospholipids. At low Thy-1 content, there was a reduction in the phase transition temperature and an increase in phospholipid cooperativity, suggesting the formation of Thy-1/GC-enriched domains. deltaH initially decreased with increasing Thy-1 content of the bilayer; however, at higher Thy-1 mole ratios, deltaH rose again. These results are interpreted in terms of a model whereby, at low protein:lipid mole ratios, Thy-1 preferentially sequesters GC to form enriched microdomains. At high protein:lipid mole ratios, Thy-1 may alter its conformation in response to steric crowding within these domains such that its interaction with the bilayer surface is reduced.Key words: glycosylphosphatidylinositol anchor, Thy-1 antigen, reconstitution, lipid bilayer, glycosphingolipid, differential scanning calorimetry, dynamic light scattering.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3