Author:
Guthrie J. Peter,Dawson Brian A.
Abstract
In aqueous sodium hydroxide solutions at 25 °C, 3-methyl-2-butenal, 1c, undergoes retroaldol cleavage to acetone and acetaldehyde. The kinetics of the retroaldol reaction were followed spectrophotometrically at 242 nm and showed simple first order behavior. When 3-methyl-3-hydroxybutanal, 2c, was added to aqueous sodium hydroxide solutions at 25 °C, there was an initial increase in absorbance at 242 nm, attributed to formation of 1c, followed by a 20-fold slower decrease; the rate of the slow decrease matches the rate of disappearance of 1c under the same conditions. Analysis of the kinetics allows determination of the three rate constants needed to describe the system: khyd = 0.00342; kdehyd = 0.00832; kretro = 0.0564; all M−1 s−1. The equilibrium constant for enone hydration is 0.41. Rate constants for the analogous reactions for acrolein and crotonaldehyde could be obtained from the literature. There is a reasonable rate–equilibrium correlation for the retroaldol step. For the enone hydration step, rate and equilibrium constants respond differently to replacement of hydrogen by methyl. It is proposed that this results from release of strain after the rate-determining step by rotation about a single bond; this decrease in strain is reflected in the equilibrium constant but not in the rate constant.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献