Cretaceous remagnetization in the Sylvester Allochthon: limits to post-105 Ma northward displacement of north-central British Columbia

Author:

Butler R. F.,Harms T. A.,Gabrielse H.

Abstract

The Sylvester Allochthon of the Slide Mountain Terrane in northern British Columbia is a structurally interleaved assemblage of ocean-floor lithologies ranging in age from Late Devonian to Late Triassic. It is the most inboard of oceanic suspect terranes and rests as a vast klippe on miogeoclinal strata of the Cassiar Terrane. The Sylvester Allochton and the Cassiar Terrane lie west of the Northern Rocky Mountain Trench Fault. Both the Sylvester Allochthon and the Cassiar Terrane are intruded by mid-Cretaceous (105 Ma) granite of the Cassiar Batholith. Six oriented cores were collected at each of 12 sites in Guadalupian Parafusulina-bearing limestone of the Sylvester Allochthon at a location 4 km from the batholith. Isothermal remanent magnetization (IRM) acquisition and subsequent thermal demagnetization indicate that pyrrhotite is the dominant ferrimagnetic mineral. Least-squares line fitting to four thermal demagnetization steps between 150 and 310 °C was used to determine the characteristic natural remanent magnetization (NRM) directions that fail the fold test at the 99.5% confidence level. We interpret these observations as indicating that the NRM is a thermoremanent or thermochemical remanent magnetism associated with intrusion of the Cassiar Batholith. The resulting paleomagnetic pole location is latitude = 75.7°N, longitude = 171.7°E, α95 = 8.5°. When compared with the mid-Cretaceous pole for cratonic North America, a small but significant clockwise rotation (R ± ΔR = 23.9 ± 18.1 °) is evident, but poleward translation (p ± Δp = 5.3 ± 9.2°) is not significant at the 95% confidence level. The paleomagnetic results are consistent with geological evidence for moderate (700 km) northward transport of the Cassiar Terrane (along with the previously emplaced overlying Sylvester Allochthon) during mid-Cretaceous to Tertiary dextral transcurrent faulting.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3