The dynamics of the reaction of O(1D) with HBr studied by crossed molecular beams and time-resolved Fourier transform spectroscopy

Author:

Balucani N.,Beneventi L.,Casavecchia P.,Volpi G. G.,Kruus E. J.,Sloan J. J.

Abstract

The reaction O(1D) + HBr has been investigated by the crossed molecular beams and infrared chemiluminescence methods in an effort to characterize the dynamics of both possible reactive channels. The angular and velocity distribution of the BrO product from the O(1D) + HBr → BrO + H pathway have been obtained in crossed beam experiments at collision energies, Ec, of 5.0 and 14.0 kcal/mol. The product center-of-mass angular distribution is found to be almost backward–forward symmetric at both Ec, with backward scattering being slightly favored, from which it is deduced that two processes contribute to this channel: a dominant one occurring via formation of a long-lived complex, following O(1D) insertion, and another one occurring via direct abstraction of the halogen atom and giving rise to a rebound dynamics. The large fraction (≈50%) of available energy released into translation indicates the existence of a potential barrier for H-displacement in the exit channel. From energy and angular momentum conservation arguments, it is inferred that BrO is formed rotationally very hot in the lowest vibrational levels of both 2Π3/2 and 2Π1/2 electronic states. The initial vibrational distribution of the OH product from the O(1D) + HBr → OH + Br channel has been measured using fast time-resolved Fourier transform spectroscopy. The vibrational distribution is strongly inverted, from which it is deduced that the HOBr intermediate dissociates very rapidly, before energy randomization occurs. A lower limit to the branching ratio of the relative cross sections for the BrO + H and OH + Br channels is derived (σ(BrO + H)/σ(OH + Br) ≥ 0.16 ± 0.07) and compared to recent bulk work. The dynamical results for the overall reaction are discussed with reference to the relevant singlet and triplet potential energy surfaces and possible molecular configurations involved. Comparison with the dynamics of the ground state reaction O(3P) + HBr → OH + Br is carried out also, to examine the effect of electronic excitation on the dynamics of the reactions of atomic oxygen with hydrogen halides.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3