Thermodynamics of mixtures containing alkoxyethanols: Part XVII — ERAS characterization of alkoxyethanol + alkane systems

Author:

González Juan Antonio,Villa Susana,Riesco Nicolás,García de la Fuente Isaías,Cobos José Carlos

Abstract

Alkoxyethanol + alkane systems have been examined in the framework of the ERAS model. An exact expression for the molar excess heat capacity at constant pressure, CPE, of solutions formed by a self-associated compound and an inert solvent has been derived. The CPE and the molar excess enthalpies (HE) and excess volumes (VE), as well as the molar enthalpies of vaporization of the pure alkoxyethanols, are represented accurately by ERAS. The calculated curves for HE and VE are skewed towards high mole fractions of the alkane. The experimental curves are more symmetrical. The opposite behaviour is observed for CPE in solutions with 2-ethoxyethanol, 2-propoxyethanol, or 2-butoxyethanol. The differences between the experimental and theoretical values arise because ERAS does not properly take into account the enhanced dipole–dipole interactions due to the formation of intramolecular H-bonds in alkoxyethanols. As in previous applications, ERAS cannot simultaneously represent molar excess Gibbs energies and liquid–liquid equilibria. DISQUAC, a purely physical theory, improves ERAS predictions for HE (except at high temperatures and pressures) and for CPE. Liquid–liquid equilibria are also described more consistently. The self-association of alkoxyethanols via intramolecular H-bonds and the strong dipole–dipole interactions lead to values of the self-association enthalpy and of the adjustable parameter of the physical contribution to HE and VE that are higher than those of the homomorphic 1-alkanols. In contrast, the equilibrium constants are lower. There is good agreement between the partial molar excess enthalpies at 298.15 K and infinite dilution of 2-alkoxyethanol in 2-alkoxyethanol(1) + n-heptane(2) mixtures and the values of the self-association enthalpies. Key words: alkoxyethanol, intermolecular, intramolecular, H-bond, dipole–dipole interactions.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3