Author:
Hwang Peter M,Vogel Hans J
Abstract
Antimicrobial peptides are ubiquitously produced throughout nature. Many of these relatively short peptides (6-50 residues) are lethal towards bacteria and fungi, yet they display minimal toxicity towards mammalian cells. All of the peptides are highly cationic and hydrophobic. It is widely believed that they act through nonspecific binding to biological membranes, even though the exact nature of these interactions is presently unclear. High-resolution nuclear magnetic resonance (NMR) has contributed greatly to knowledge in this field, providing insight about peptide structure in aqueous solution, in organic cosolvents, and in micellar systems. Solid-state NMR can provide additional information about peptide-membrane binding. Here we review our current knowledge about the structure of antimicrobial peptides. We also discuss studies pertaining to the mechanism of action. Despite the different three-dimensional structural motifs of the various classes, they all have similar amphiphilic surfaces that are well-suited for membrane binding. Many antimicrobial peptides bind in a membrane-parallel orientation, interacting only with one face of the bilayer. This may be sufficient for antimicrobial action. At higher concentrations, peptides and phospholipids translocate to form multimeric transmembrane channels that seem to contribute to the peptide's hemolytic activity. An understanding of the key features of the secondary and tertiary structures of the antimicrobial peptides and their effects on bactericidal and hemolytic activity can aid the rational design of improved analogs for clinical use.Key words: structure, antimicrobial peptide, NMR, membrane, hemolytic.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
231 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献