Rhizospheric soil fungal community patterns of Duchesnea indica in response to altitude gradient in Yunnan, southwest China

Author:

Jamil Arslan12,Yang Jun-Yu12,Su Dai-Fa12,Tong Jiang-Yun3,Chen Shan-Yan3,Luo Zhi-Wei3,Shen Xue-Mei3,Wei Shi-Jie3,Cui Xiao-Long12

Affiliation:

1. Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China.

2. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China.

3. Kunming Academy of Agricultural Science, Kunming, Yunnan 650034, People’s Republic of China.

Abstract

The magnitude of the impact of altitude gradient on microbial community and diversity has been studied in recent decades. Whereas bacteria have been the focus of most studies, fungi have been given relatively less attention. As a vital part of the macro- and microscopic ecosystem, rhizosphere fungi play a key role in organic matter decomposition and relative abundance of plant species and have an impact on plant growth and development. Using Duchesnea indica as the host plant, we examined the rhizosphere soil fungal community patterns across the altitude gradient in 15 sites of Yunnan province by sequencing the fungal ITS2 region with the Illumina MiSeq platform. We determined the fungal community composition and structure. We found that, surprisingly, rhizosphere soil fungal diversity of D. indica increased with altitudinal gradient. There was a slight difference in diversity between samples from high- and medium-altitude sites, with medium-altitude sites having the greater diversity. Furthermore, the rhizosphere soil fungal community composition and structure kept changing along the altitudinal gradient. Taxonomic results showed that the extent of phylum diversity was greatest at high-altitude sites, with Ascomycota, Basidiomycota, Zygomycota, and Glomeromycota as the most dominant fungal phyla.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3