Effects of bioporous carriers on the performance and microbial community structure in side-stream anaerobic membrane bioreactors

Author:

Zhang Bin12,Yue Jiao1,Guo Yu3,Liu Taixin3,Zhou Min3,Yang Ying3,Wu Jiaxu3,Zeng Yang3,Ning Xinqiang3

Affiliation:

1. School of Civil Engineering and Construction and Environment, Xihua University, Chengdu 610039, P.R. China.

2. School of Food and Biotechnology, Xihua University, Chengdu 610039, P.R. China.

3. School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China.

Abstract

The aim of this study was to investigate the effects of a volcanic rock porous carrier (VRPC) on sludge reduction, pollutant removal, and microbial community structure in an anaerobic side-stream reactor (ASSR). Three lab-scale membrane bioreactors (MBRs), including an anoxic–oxic MBR, which served as the control (C-MBR), an ASSR-coupled MBR (A-MBR), and an A-MBR filled with VRPC (FA-MBR) were stably and simultaneously operated for 120 days. The effect of the three reactors on the removal of chemical oxygen demand (COD) was almost negligible (all greater than 95%), but the average removal efficiency of ammonium nitrogen, total nitrogen, and total phosphorus was significantly improved by the insertion of an ASSR, especially when the ASSR was filled with VRPC. Finally, A-MBR and FA-MBR achieved 16.2% and 26.4% sludge reduction rates, with observed sludge yields of 0.124 and 0.109 g mixed liquid suspended solids/g COD, respectively. Illumina MiSeq sequencing revealed that microbial diversity and richness were highest in the VRPC, indicating that a large number of microorganisms formed on the carrier surface in the form of a biofilm. Abundant denitrifying bacteria (Azospira, Comamonadaceae_unclassified, and Flavobacterium) were immobilized on the carrier biofilm, which contributed to increased nitrogen removal. The addition of a VRPC to the ASSR successfully immobilized abundant hydrolytic, fermentative, and slow-growing microorganisms, which all contributed to reductions in sludge yield.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3