The coefficient of earth pressure at rest

Author:

Mesri G.,Hayat T.M.

Abstract

Laboratory experiments on undisturbed specimens of a large number of soft clay deposits, as well as previous measurements on clays and granular soils, were used to examine and explain the magnitude and behavior of the coefficient of earth pressure at rest, K0: (i) after sedimentation – primary consolidation, (ii) during secondary-compression aging, (iii) after active or passive preshearing away from the laterally constrained condition, (iv) during a decrease in effective vertical stress, and (v) during an increase in effective vertical stress in the recompression or compression range, in terms of [Formula: see text], the slope of the effective horizontal [Formula: see text] versus effective vertical[Formula: see text] stress path. The behavior of K0 is explained using the concept of mobilized angle of friction in laterally constrained deformation condition. The Jaky equation provides, in terms of the angle of internal friction, a good estimate of K0 of sedimented, normally consolidated young clays and granular soils, as well as of [Formula: see text] of presheared clays and sands, and of densified granular soils that are subjected to laterally constrained compression from [Formula: see text]. Empirical equations provide reasonable estimates of K0 for clays and granular soils after secondary-compression aging, after preconsolidation by unloading, and for soft clay deposits that display a preconsolidation pressure [Formula: see text] greater than in situ effective vertical stress [Formula: see text]. Proposed empirical equations and methods successfully predict K0 of presheared clays. Key words: coefficient of earth pressure at rest, soft clays, granular soils, presheared soils, sampling and laboratory testing.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3