Mitochondrial dysfunction regulates the JAK–STAT pathway via LKB1-mediated AMPK activation ER-stress-independent manner

Author:

Kim Dong-Yeon1,Lim Su-Geun1,Suk Kyoungho2,Lee Won-Ha1

Affiliation:

1. School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.

2. Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.

Abstract

Mitochondria affect cellular functions alone or in cooperation with other cellular organelles. Recent research has demonstrated the close relationship of mitochondria with the endoplasmic reticulum (ER), both at the physical and the functional level. In an effort to define the combined effect of mitochondrial dysfunction (MD) and ER stress in the proinflammatory activities of macrophages, the human macrophage-like monocytic leukemia cell line THP-1 was treated with mitochondrial electron transport chain (ETC) blockers, and changes in the cellular responses upon stimulation by interferon (IFN)-γ were analyzed. Inducing mitochondrial dysfunction (MD) with ETC blockers resulted in suppression of IFN-induced activation of JAK1 and STAT1/3, as well as the expression of STAT1-regulated genes. In addition, experiments utilizing pharmacological modulators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and liver kinase B1 (LKB1)-deficient HeLa cells demonstrated that these suppressive effects are mediated by the LKB1–AMPK pathway. Treatment with pharmacological inhibitors of ER stress sensors failed to affect these processes, thus indicating that involvement of ER stress is not required. These results indicate that MD, induced by blocking the ETC, affects IFN-induced activation of JAK–STAT and associated inflammatory changes in THP-1 cells through the LKB1–AMPK pathway independently of ER stress.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3