LncRNA H19 promotes inflammatory response induced by cerebral ischemia–reperfusion injury through regulating the miR-138-5p–p65 axis

Author:

Li Hui1,Tang Chenglu2,Wang Dan3

Affiliation:

1. Department of Neurology, The First People’s Hospital of Tianmen city in Hubei Province, Tianmen City, Hubei Province, 431700, China.

2. Department of Gastroenterology, Wuhan Fifth Hospital, Wuhan City, Hubei Province, 430050, China.

3. Department of Geriatrics, Hefei Binhu Hospital, Hefei City, Anhui Province, 230601, China.

Abstract

Recent studies have shown that long non-coding RNA(LncRNA) H19 is up-regulated in the brain of rats suffering from cerebral ischemia–reperfusion (I/R) injury, inducing severe disability and mortality. Little was known about the molecular mechanisms underlying the involvement of H19 in cerebral I/R injury. In this study, a rat model of I/R was induced by transient middle cerebral artery occlusion (tMCAO). PC-12 cells exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) were used as an in vitro model. Our results show that H19 is up-regulated in both in vivo and in our in vitro model. Further study indicated that knockdown of H19 promotes cell proliferation, decreases the rate of cell apoptosis, and ameliorates inflammation after OGD/R simulation. Our in vivo study shows that H19 knockdown ameliorates inflammation and improves neurological function in our rat model of tMCAO. Remarkably, the results from our luciferase reporter assays suggest that H19 negatively regulates the expression of miR-138-5p, and p65 was identified as a target of miR-138-5p. To sum up, this study demonstrated that H19 promotes an inflammatory response and improves neurological function in a rat model of tMCAO by regulating the expression of miR-138-5p and p65. This study reveals the important role and underlying mechanism of H19 in the progress of cerebral I/R injury, which could serve as a potential target for further treatment.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3