MicroRNA-518-3p suppresses cell proliferation, invasiveness, and migration in colorectal cancer via targeting TRIP4

Author:

Yang Heng1,Ren Jia2,Bai Yu1,Jiang Jielin1,Xiao Shiyao3

Affiliation:

1. Department of General Surgery, 903 Hospital, Jiangyou, Sichuan 621700, P.R. China.

2. Department of Nosocomial Infection Management, 903 Hospital, Jiangyou, Sichuan 621700, P.R. China.

3. Department of Science and Education, 903 Hospital, Jiangyou, Sichuan 621700, P.R. China.

Abstract

MicroRNA (miR)-518-3p has been shown to function as a tumor suppressor. This study was conducted to investigate the effects of miR-518-3p in colorectal cancer (CRC). The miR-518-3p mimic, mimic negative control (NC), miR-518-3p inhibitor, inhibitor-NC, ShRNA-TRIP4, and ShRNA-NC vectors were transfected into SW480 cells using Lipofectamine 2000. Cell viability was detected using CCK-8. Colony formation, cell invasiveness, and cell migration were assessed by plate colony formation, Transwell assays, and wound healing assays, respectively. Relative mRNA and protein levels were detected using RT–qPCR and Western blot, respectively. The target gene thyroid hormone receptor interactor 4 (TRIP4) of miR-518-3p was identified and further verified using dual-luciferase reporter assay. Compared with normal tissues, levels of miR-518-3p were decreased and TRIP4 was significantly increased in the tissues from patients with CRC. Following transfection with a miR-518-3p mimic or ShRNA-TRIP4, cell viability decreased in a time-dependent manner, and colony formation rate, wound closure rate, and the number of invasive cells were much lower for the transfected cells than in the corresponding NC and control groups. miR-518-3p overexpression or silencing of TRIP4 significantly down-regulated the expression of MMP-2 and MMP-9. Knockdown of miR-518-3p had the opposite effects, and TRIP4 was identified as a target of miR-518-3p. The inhibitory effects of miR-518-3p on the progressions of CRC are associated with TRIP4.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3