Author:
Chapuis Robert P.,Gill Denis E.,Baass Karsten
Abstract
New laboratory results are presented on how densification influences the hydraulic anisotropy of a sand. Results are given for two compaction modes. Tests were performed at different densities in order to derive the curves kv(e) and kh(e). The samples were statically compacted in the first series and dynamically compacted in the second series. The ratio rk = kh/kv is different for the two series. It is higher than 1 for static compaction and lower than 1 for dynamic compaction. Thus, the anisotropy ratio of granular soils can take several values for the same void ratio, depending on the preparation mode. Even if the anisotropy ratios differ, the first invariant of the hydraulic conductivity tensor, 11k, is found to be a function of e only for this sand, regardless of the densification mode. The evolution of an adimensional anisotropy index, I1k/kv, versus a density index, Ie, is compared for the sand and a dispersed clay. The evolutions are nearly identical, which means that the hydraulic anisotropy of natural homogeneous soils may be similar for sediments having settled in still water and influenced subsequently by gravity only. From an engineering viewpoint, a reasonably good fit is obtained between experimental results and predictive charts. The results also demonstrate that the high apparent anisotropy often found either in natural or in compacted soils is not induced mainly by deposition or compaction but rather is due to nonuniformity or segregation in the soil mass. Key words: soil, permeability, anisotropy, laboratory, compaction.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献