Synthesis of the stereoisomers of a novel antibacterial agent and interpretation of their relative activities in terms of a theoretical model of the penicillin receptor

Author:

Wolfe Saul,Zhang Caijun,Johnston Blair D.,Kim Chan-Kyung

Abstract

2,2-Dimethyl-3-(2′-hydroxypropyl)-5-carboxy-Δ3 -1,4-thiazine (1) is a designed antibacterial agent. Based on an analysis of how penicillin complexes to and reacts with a model of a penicillin-binding protein, 1 contains a functional group (C=N) that can react with a serine hydroxyl group of the receptor according to the putative reaction Enz-OH + C = N → Enz-O-C-NH. Compound 1 also contains additional substituents that are designed to position the O-H and C=N groups relative to one another in the enzyme–substrate complex in a geometry that attempts to reproduce the optimum geometry of approach of two such reactants. A most important assumption is that this optimum geometry can be computed ab initio. In a first preparation of 1, (±)-5-methyl-4-hexene-2-ol (2) was converted to the lithium salt of (±)-2-mercapto-2-methyl-5-tert-butyldimethylsiloxy-3- hexanone (7), which was condensed with the N-tert-butoxycarbonyl-D- and L-serine-β-lactones (3). The synthesis was completed by deprotection with formic acid and cyclization in water. The R and S enantiomers of 2 have now been obtained, and the absolute configuration of the alcohol established, by reaction of the R- and S-propylene oxides with an organometallic reagent prepared from β,β-dimethylvinyl bromide. The R alcohol has also been secured by lipase-catalyzed transesterification with trifluoroethyl butyrate, and chemical hydrolysis of the trifluoroethyl ester. The R and S enantiomers of 2 were converted to the R and S enantiomers of 7, and these were condensed with the R and S enantiomers of 3 to yield each of the stereoisomers of the chemically unstable 1 in ca. 95% optically pure form. Antibacterial activity resides in the 5S,8R and 5S,8S isomers. These findings are shown to be consistent with the theoretical model. It is hoped that the stability of the lead structure 1 can be improved, to allow binding experiments with penicillin recognizing enzymes to proceed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3