Enhancement of [3H]DAGO1 binding to rat brain by low concentrations of monovalent cations

Author:

Bolger Gordon T.,Marcus Kendall A.,Thibou Ronald,Skolnick Phil,Weissman Ben Avi

Abstract

The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5′-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity μ-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris–HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+,2.9 mM and Li, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the μ-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris–HCl. In 50 mM Tris–HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris–HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited, [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris–HCl, respectively. These findings indicate that the in vitro effects of Na+ at μ- and possibly other opiate receptors in rat brain are dependent on the concentration of Tris–HCl used in the assay buffer, lower concentrations of Tris-HCl revealing novel regulatory effects for Na+ at μ-opiate receptors.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3