Author:
Moule D.C.,Chantranupong L.,Judge R.H.,Clouthier D.J.
Abstract
The energy levels of the lower valence and Rydberg states of selenoformaldehyde, CH2Se, have been calculated by the SCF/CI method. Wavefunctions for the ROHF (restricted open shell Hartree–Fock) states were obtained with the Binnings–Curtis double-ζ basis set, augmented with Rydberg and polarization functions. Configuration interaction was applied to the parent configurations, PCMO (parent configuration molecular orbital). Oscillator strengths were evaluated for the allowed electric dipole transitions by the RPA (random phase approximation), and SOPPA (second-order polarization propagator approximation) methods. The spin-orbit contribution to the zero field splitting of the first triplet state, 3A2(n,π*) as well as the oscillator strengths to the three spin components were calculated by perturbation theory. These calculations predict that the Sx, Sy, and Sz components are shifted by −96.091,−96.707, and + 29.167 cm−1, respectively, from their unperturbed position. The oscillator strengths for the three components fx, fy, and fz of the 3A2(n,π*) ← 1A1(g.s.) transition were calculated to be 3.45 × 10−7, 1.15 × 10−7, and 173.0 × 10−7.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献