Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy

Author:

García-Díaz Angel,Oya Ricardo,Sánchez Antonio,Luque Francisco

Abstract

The inheritance of mitochondrial and chloroplast genomes does not follow Mendelian laws, but proceeds by vegetative segregation. Most organisms show organelle homoplasmy, which is probably produced and maintained during sexual reproduction. We have tested the effect of prolonged vegetative multiplication in the maintenance of mitochondrial homoplasmy and the generation of heteroplasmy in cultivated olive trees, Olea europaea L. Seven trees, each representing a different variety of olive, were analysed by the study of an intergenic spacer region of the mitochondrial genome. A very high level of heteroplasmy was detected in all cases. We found multiple genome variants of the sequence analysed. The frequency of genomes with no changes in the spacer region was 11.5%. This means that 88.5% of genomes contain at least one change. The same spacer mitochondrial region was sequenced in several clones from four olive trees of a second generation of sexually reproduced trees. In these trees, many clones were identical and had no changes, which represents a clear reduction of the heteroplasmy (p < 0.001). Therefore, this work supports the relevance of the role of sexual reproduction in the maintenance of mitochondrial homoplasmy and also shows that mutations accumulate in a non-coding sequence of the mitochondrial genome when vegetative propagation is maintained for a long period of time.Key words: mitochondrial genome, homoplasmy, heteroplasmy, olive trees, vegetative reproduction, sexual reproduction.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3