Xenopustranscription factor IIIA and the 5S nucleosome: development of a useful in vitro system

Author:

Yang Zungyoon,Hayes Jeffrey J

Abstract

5S RNA genes in Xenopus are regulated during development via a complex interplay between assembly of repressive chromatin structures and productive transcription complexes. Interestingly, 5S genes have been found to harbor powerful nucleosome positioning elements and therefore have become an important model system for reconstitution of eukaryotic genes into nucleosomes in vitro. Moreover, the structure of the primary factor initiating transcription of 5S DNA, transcription factor IIIA, has been extensively characterized. This has allowed for numerous studies of the effect of nucleosome assembly and histone modifications on the DNA binding activity of a transcription factor in vitro. For example, linker histones bind 5S nucleosomes and repress TFIIIA binding in vitro in a similar manner to that observed in vivo. In addition, TFIIIA binding to nucleosomes assembled with 5S DNA is stimulated by acetylation or removal of the core histone tail domains. Here we review the development of the Xenopus 5S in vitro system and discuss recent results highlighting new aspects of transcription factor – nucleosome interactions.Key words: nucleosomes, 5S genes, transcription factor IIIA, chromatin.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A half century of exploring DNA excision repair in chromatin;Journal of Biological Chemistry;2023-09

2. H1–nucleosome interactions and their functional implications;Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms;2016-03

3. Gamma Radiation-Induced Damage in the Zinc Finger of the Transcription Factor IIIA;Bioinorganic Chemistry and Applications;2016

4. Epigenetic regulation of transcription by RNA polymerase III;Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms;2013-10

5. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development;The Plant Journal;2012-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3