Fostering comprehension and integration in mycorrhiza biology: conceptual scaffolding as an aid in teaching and exploration,

Author:

Massicotte Hugues B.1,Guinel Frédérique C.2

Affiliation:

1. Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.

2. Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada.

Abstract

Over the last decade, we have witnessed extraordinary progress in the understanding of molecular dialogues between the partners in plant root mutualisms and, as such, a considerable amount of new information now needs to be integrated into an already significant body of literature. The topic of symbiosis has become difficult to explore in a teaching venue, as there is seemingly so much to discuss, and yet students are truly interested in the discipline because of its potential applications in conservation, sustainable agriculture, and forestry. In this minireview targeted to instructors, senior students, and scientists, we offer a means of teaching the symbioses between mycorrhizal fungi and vascular plants, whereby we propose a conceptual staircase with three levels of incremental learning difficulty. At the first level, we describe the fundamentals of mycorrhizas with special emphasis on the plant–fungus interface. At the second level, we focus on the pre-communication between the two partners. At the third level, we discuss the physiology of the interface in terms of agriculture and forestry. At the end of each level, we provide a short summary where the most important concepts have been outlined for an instructor. As well, throughout the text, we raise questions of interest to the field at large.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3