A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells

Author:

Haskin Christine L.,Athanasiou Kyriacos A.,Klebe Robert,Cameron Ivan L.

Abstract

Human osteosarcoma cells, MG-63, were exposed to a hydrostatic pressure shock of 4.0 MPa for 20 min. Changes in subcellular distribution of the cytoskeletal elements and heat shock protein 70 (hsp70) were followed by indirect immunofluorescence and by avidin–biotin–peroxidase protocols. During recovery, total cellular RNA was determined and actin and aldolase mRNA content was followed using reverse transcription – polymerase chain reaction techniques. Hydrostatic pressure caused cell rounding (but not cell death), disruption of microtubules, collapse of intermediate filaments to a perinuclear location, collapse of actin stress fibers into globular aggregates in the cytoplasm, and the formation of several large elongated intranuclear actin inclusions. During recovery, the cells flattened, reorganized microtubules, and redistributed intermediate filaments prior to the reappearance of actin stress fibers. At 20 and 60 min following the initiation of hydrostatic pressure, there was increased anti-hsp70 staining at the nuclear membrane and concentration of hsp70 in four to six granules in the nucleus. At 120 min following the hydrostatic pressure, hsp70 showed intense staining in the cytoplasm and hsp70-containing granules in the nucleus disappeared. Cellular RNA decreased during the first 120-min posthydrostatic pressure shock and then recovered to near prehydrostatic pressure treatment levels by 240 min. Actin mRNA abundance, in relation to aldolase mRNA abundance, showed the same temporal pattern of initial decrease, followed by increase as did total RNA. Review of the literature indicated that eukaryotic cells respond to heat shock and to hydrostatic pressure by disruption of the cytoskeletal elements and by similar modifications in genetic expression. In this study, the observed responses of MG-63 cells to a 4-MPa hydrostatic pressure shock was like the reported response of mammalian cells to a 43 °C heat shock.Key words: heat shock response, hydrostatic pressure, cytoskeleton.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3