Upper-crustal, basement-involved folding in the East Range of the Sudbury Basin, Ontario, inferred from paleomagnetic data and spatial analysis of mafic dykes

Author:

Clark M.D.1,Riller U.1,Morris W.A.1

Affiliation:

1. School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.

Abstract

Tilting of crystalline basement rocks associated with folding strain at uppermost crustal levels is difficult to recognize if basement rocks are devoid of traceable marker planes. Here we use the spatial variation in strike of Paleoproterozoic mafic dyke segments complemented by compiled paleomagnetic data to identify tilting in Archean basement rocks associated with kilometre-scale folds of the eastern Sudbury Basin, Ontario. Spatial analysis of the strike of dyke segments is consistent with generation of the NE lobe and a newly identified anticline, referred to as the West Bay Anticline, in the layered Sudbury Igneous Complex (SIC). This anticline accounts better for the structural characteristics of the eastern Sudbury Basin than a previously proposed anticline with west-plunging hinge line. The West Bay Anticline is characterized by abrupt plan-view thickness variations in the lower SIC and curved faults displaying significant strike separations of SIC contacts. These structural characteristics are consistent with folding strain imparted to the SIC and adjacent Archean rocks during formation of the West Bay Anticline. Sublayer embayments and associated quartz diorite dykes likely served as zones of mechanical weaknesses, at which the higher-order folds localized. Unfolding magnitudes of the NE lobe based on primary paleomagnetic remanence directions are significantly smaller than inferred magnitudes that are based on the assumption that the basal SIC contact was initially planar. Thus, the basal SIC contact in the NE lobe likely had a trough-like geometry at the time of remanence acquisition. We advocate a scenario for the formation of the NE lobe, in which the trough geometry of the SIC is primary rather than a consequence of tilting prior to solidification of, and remanence acquisition in, the SIC. Finally, we caution the interpretation of photo lineaments in eroded basement terranes purely as a consequence of faulting.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3