Altered inotropic reactivity in diabetic rabbit right ventricular myocardium

Author:

Lee J Rex,Zhang Xin-Jian,Lin Bor-Kang,Reigel Charles E,Tenner, Jr. Thomas E

Abstract

Alloxan monohydrate was used to induce diabetes in rabbits, which were maintained for a 3-month period with or without daily insulin replacement along with age-matched controls. Isolated right ventricular myocardial strips were used to generate dose–response curves to isoproterenol, forskolin, and Bay K 8644. Basal developed force was significantly elevated in diabetic ventricular strips. While isoproterenol acted as a full inotropic agonist, diabetic preparations revealed a consistent but insignificant decrease in the maximum developed force. While both sensitivity to isoproterenol and β-adrenoceptor density were decreased in preparations from diabetic rabbits, there was no associated increase in circulating plasma catecholamines. In contrast, forskolin and Bay K 8644 were partial agonists in control preparations but full inotropic agonists in diabetic preparations, demonstrating significant increases in maximum developed force. This hyperresponsiveness was not associated with altered calcium channel density. Finally, insulin replacement reduced or prevented all diabetic-related changes. These data indicate that the hyperresponsiveness to forskolin and Bay K 8644 represents an altered utilization of intracellular calcium in the diabetic rabbit, converting them into full agonists similar to isoproterenol. The decrease in sensitivity to isoproterenol correlated with a decrease in β-adrenoceptor density but not elevated circulating catecholamines as previously observed in diabetic rats.Key words: experimental diabetes, β-adrenoceptor density, inotropic state, hyperresponsiveness, subsensitivity, calcium utilization.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3