Polarized atomic radiative emission in electric and magnetic fields1This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas.

Author:

Jacobs Verne L.1

Affiliation:

1. Center for Computational Materials Science, Code 6390, Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375-5345, USA.

Abstract

A reduced density matrix approach is employed to provide a general theoretical description of polarized radiative emission during single-photon transitions from bound and auto-ionizing states of many-electron atomic systems in the presence of a general arrangement of static (or quasi-static) electric and magnetic fields. Polarized radiative emission from partially ionized atomic systems can occur as a result of the excitation of the radiating atomic states by electrons or ions with an anisotropic velocity distribution, which can be produced in an electron or ion beam experiment, and in a non-equilibrium plasma environment. Polarized radiative emission can also be produced or modified during the excitation of the atomic system in the presence of electric and magnetic fields, and electromagnetic fields. In electric and magnetic fields, the normally overlapping angular momentum projection components of atomic spectral lines can be substantially shifted from their field-free positions and split into spectroscopically resolvable (and inherently polarized) features. Because of the breakdown of the field-free angular momentum and parity selection rules, otherwise forbidden components of atomic spectral lines can be generated. Using a representation based on the field-free many-electron atomic states, the Stark–Zeeman patterns can be determined by a diagonalization of the atomic Hamiltonian in the presence of electric and magnetic fields. In the density operator approach, account can be taken of the coherent excitation of a particular subspace of the initial atomic bound or auto-ionizing states. A general expression for the matrix elements of the detected-photon density operator is obtained and provides a unified framework for the analysis of the spectral intensity, angular distribution, and polarization of the Stark–Zeeman patterns. From a unified development of time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the more comprehensive reduced density matrix approach, the non-equilibrium atomic state kinetics and the homogeneous spectral line shapes can be systematically and self-consistently described.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3