Iron transport: emerging roles in health and disease

Author:

Goswami Tapasree,Rolfs Andreas,Hediger Matthias A

Abstract

In the theater of cellular life, iron plays an ambiguous and yet undoubted lead role. Iron is a ubiquitous core element of the earth and plays a central role in countless biochemical pathways. It is integral to the catalysis of the redox reactions of oxidative phosphorylation in the respiratory chain, and it provides a specific binding site for oxygen in the heme binding moiety of hemoglobin, which allows oxygen transport in the blood. Its biological utility depends upon its ability to readily accept or donate electrons, interconverting between its ferric (Fe3+) and ferrous (Fe2+) forms. In contrast to these beneficial features, free iron can assume a dangerous aspect catalyzing the formation of highly reactive compounds such as cytotoxic hydroxyl radicals that cause damage to the macromolecular components of cells, including DNA and proteins, and thereby cellular destruction. The handling of iron in the body must therefore be very carefully regulated. Most environmental iron is in the Fe3+ state, which is almost insoluble at neutral pH. To overcome the virtual insolubility and potential toxicity of iron, a myriad of specialized transport systems and associated proteins have evolved to mediate regulated acquisition, transport, and storage of iron in a soluble, biologically useful, non-toxic form. We are gradually beginning to understand how these proteins individually and in concert serve to maintain cellular and whole body homeostasis of this crucial yet potentially harmful metal ion. Furthermore, studies are increasingly implicating iron and its associated transport in specific pathologies of many organs. Investigation of the transport proteins and their functions is beginning to unravel the detailed mechanisms underlying the diseases associated with iron deficiency, iron overload, and other dysfunctions of iron metabolism.Key words: iron, transporter, transferrin, hemochromatosis, anemia, DCT1.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3