Chromatin supraorganization, DNA fragmentation, and cell death in snake erythrocytes

Author:

Miyamoto Maristela,Vidal Benedicto C,Mello Maria Luiza S

Abstract

In nucleate erythrocytes of several vertebrate groups, the frequency and intensity of DNA fragmentation associated with programed cell death vary considerably. Although hemoglobin efficiency may be related to erythrocyte life span, and hemoglobin types and erythrocyte life spans are assumed to vary in reptiles, no data on DNA fragmentation and chromatin organization as related to cell death exist for snakes. In the present study, chromatin supraorganization, DNA fragmentation, and cell death were investigated in four snake species (Crotalus durissus terrificus, Bothrops jararaca, Bothrops alternatus, and Bothrops neuwiedii), which differ in their geographical distribution and habitats, by using image analysis of Feulgen hydrolysis kinetics, the TUNEL assay, single-cell gel electrophoresis, and transmission electron microscopy. Relatively few circulating erythrocytes were found to be simultaneously committed to cell death, although there was some variation among the snake species. Conspicuous nuclear and cytoplasmic organelles suggestive of metabolic activity were seen ultrastructurally in most snake erythrocytes. The DNA of the snake erythrocyte chromatin was much more resistant to Feulgen acid hydrolysis (DNA depurination and breakdown) than that of young adult bullfrog erythrocytes, which had a high frequency and intensity of DNA fragmentation. Of the species studied, B. neuwiedii and C. d. terrificus showed the greatest resistance to Feulgen acid hydrolysis and to the DNA fragmentation, revealed by the TUNEL assay. Although B. neuwiedii also showed the lowest frequency of cells with more damaged DNA in the single-cell gel electrophoresis assay, C. d. terrificus had the highest frequency of damaged cells, possibly because of the abundance of alkaline-sensitive DNA sites. The results for DNA fragmentation and cell death in erythrocytes of B. jararaca and B. alternatus generally differed from those for C. d. terrificus and B. neuwiedii and may reflect differences in the biology of these species selected under different geographical habitats. The differences in erythrocyte cell biology reported here may be related to hemoglobin variants selected in the mentioned snake species and that would lead the cells to different resistances to unfavorable environmental conditions.Key words: erythrocytes, snakes, DNA fragmentation, chromatin supraorganization, cell death.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3