Oxidative degradation of dihydrofolate and tetrahydrofolate

Author:

Chippel Diana,Scrimgeour K. G.

Abstract

7,8-Dihydrofolate has been degraded oxidatively using ferricyanide under anaerobic conditions. Three reaction pathways have been found for this oxidation, and these pathways can be controlled by variation of the pH and by the nature of the buffer anion. At pH 9, treatment of dihydrofolate with two equivalents of ferricyanide leads to quantitative formation of folate. At pH 5.6 in morpholinoethanesulfonic acid buffer, the same reactants produce p-aminobenzoylglutamate, dihydroxanthopterin, and formaldehyde. Each of these products has been identified, and isolated in high yield. 6-Formyldihydropterin can be isolated by oxidation of dihydrofolate in either phosphate or carboxylic acid buffers. This compound does not appear to be an intermediate in the formation of dihydroxanthopterin under the conditions of our experiments. Tetrahydrofolate was also degraded oxidatively using ferricyanide. Although it is more susceptible to cleavage than is dihydrofolate, tetrahydrofolate gives similar products. In addition, moderate quantities of pterin were isolated from oxidation of tetrahydrofolate at pH 5.6.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3