Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-α-R β3-galactosyltransferase from rat liver

Author:

Brockhausen Inka,Möller Gabriele,Pollex-Krüger Annette,Rutz Volker,Paulsen Hans,Matta Khushi L.

Abstract

The specificity of glycosyltransferases is a major control factor in the biosynthesis of O-glycans. The enzyme that synthesizes O-glycan core 1, i.e., UDP-galactose:N-acetylgalactosamine-α-R β3-galactosyltransferase (β3-Gal-T; EC 2.4.1.122), was partially purified from rat liver. The enzyme preparation, free of pyrophosphatases, β4-galactosyltransferase, β-galactosidase, and N-acetylglucosaminyltransferase I, was used to study the specificity and inhibition of the β3-Gal-T. β3-Gal-T activity is sensitive to changes in the R-group of the GalNAcα-R acceptor substrate and is stimulated when the R-group is a peptide or an aromatic group. Derivatives of GalNAcα-benzyl were synthesized and tested as potential substrates and inhibitors. Removal or substitution of the 3-hydroxyl or removal of the 4-hydroxyl of GalNAc abolished β3-Gal-T activity. Compounds with modifications of the 3- or 4-hydroxyl of GalNAcα-benzyl did not show significant inhibition. Removal or substitution of the 6-hydroxyl of GalNAc reduced activity slightly and these derivatives acted as competitive substrates. Derivatives with epoxide groups attached to the 6-position of GalNAc acted as substrates and not as inhibitors, with the exception of the photosensitive 6-O-(4,4-azo)pentyl-GalNAcα-benzyl, which inhibited Gal incorporation into GalNAcα-benzyl. The results indicate that the enzyme does not require the 6-hydroxyl of GalNAc, but needs the 3- and the axial 4-hydroxyl as essential requirements for binding and activity. In the usual biochemical O-glycan pathway, core 2 (GlcNAcβ6[Galβ3]GalNAcα-) is formed from core 1 (Galβ3GalNAc-R). We have now demonstrated an alternate pathway that may be of importance in human tissues.Key words: β3-Gal-transferase, mucin synthesis, O-glycan core 1, enzyme specificity, enzyme inhibition.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3