Shape of wing wear fails to affect load lifting in common eastern bumble bees (Bombus impatiens) with experimental wing wear

Author:

Roberts Jordan C.11,Cartar Ralph V.11

Affiliation:

1. Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada.

Abstract

Wing wear reflects the accumulation of irreversible damage to an insect’s wings over its lifetime and this damage should influence flight performance. In the case of bumble bees, flight seems robust to variation in wing-area asymmetry and air pressure, but not to loss of wing area. However, how the pattern of wing wear affects flight performance remains unstudied. In nature, wing wear typically occurs in a ragged and haphazard pattern along the wing’s trailing margin, a shape strikingly different from the straight cut applied in past studies. In this study, we test if shape of wing wear (implemented as four distinct treatments plus a control) affects maximum load-lifting capabilities and wingbeat frequency of worker common eastern bumble bees (Bombus impatiens Cresson, 1863). We found that shape of wing wear of 171 mg bees had no detectable effect on maximum load-lifting capability (detectable effect size = 18 mg) or on wingbeat frequency (detectable effect size = 15 Hz), but that loss of wing area reduced load-lifting capability and increased wingbeat frequency. The importance of wing area in explaining the load-lifting ability of bumble bees is reinforced in this study. But, paradoxically, shape of wing wear did not detectably affect lift generation, which is determined by unsteady aerodynamic forces in these lift-reliant insects.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bio-inspired compensatory strategies for damage to flapping robotic propulsors;Journal of The Royal Society Interface;2024-07

2. Resilin in Insect Flight Systems;Advanced Functional Materials;2023-08-18

3. Urban landscapes affect wild bee maternal investment and body size;Urban Ecosystems;2023-05-30

4. The frequency of wing damage in a migrating butterfly;Insect Science;2022-12-19

5. Flight activity and age cause wing damage in house flies;Journal of Experimental Biology;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3