Identification of sulfoquinovosyl diacylglycerol as a major polar lipid in Marinococcus halophilus and Salinicoccus hispanicus and substitution with phosphatidylglycerol

Author:

Sprott G Dennis,Bakouche Laurène,Rajagopal Kammara

Abstract

The sulfonolipid sulfoquinovosyl diacylglycerol normally associated with photosynthetic membranes was identified as a major lipid in Marinococcus halophilus, Salinicoccus hispanicus ("Marinococcus hispanicus"), and Marinococcus sp. H8 (Planococcus sp. H8). Phosphatidylglycerol and 0%–10% cardiolipin accounted for the remaining polar lipids in these moderately halophilic, Gram-positive bacteria. Negative-ion fast atom bombardment mass spectrometry was used to quantify these three polar lipids from cells grown in media containing 0.03 to 4 mol NaCl/L. All strains revealed dramatic shifts in the ratio of sulfonolipid to phospholipid dependent on the salinity of the growth media, when grown in media with low phosphate content. Highest sulfonolipid content occurred during best growth in 0.5–2 mol NaCl/L, approaching 80%–90% of the total polar lipids. It was demonstrated that growth of M. halophilus in the presence of elevated phosphate and low sulfate blocked the shift to decreased phospholipids most notably during growth in 0.5–2 mol NaCl/L, without significant influence on growth. The data suggest that in low-phosphate media the influence of NaCl concentration on growth rate (and resulting demand for phosphate by competing pathways) is the primary factor responsible for exchange between phospholipid and sulfonolipid. We conclude that sulfoquinovosyl diacylglycerol, by substitution with phospholipids, contributes to the ability of these Gram-positive cocci to adapt to changing ionic environments. A comparison of 16S rRNA established a close similarity between Planococcus sp. H8 and M. halophilus.Key words: sulfoquinovosyl diacylglycerol, salinity, Marinococcus halophilus, Salinicoccus hispanicus, Marinococcus sp. H8 (Planococcus sp. H8).

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3