Assimilation of oxalate, acetate, and CO2byOxalobacter formigenes

Author:

Cornick N. A.,Allison M. J.

Abstract

Oxalobacterformigenes is the only well-documented oxalate-degrading bacterium isolated from the gastrointestinal tract of animals. The production of ATP by Oxalobacter formigenes is centered around oxalate metabolism and oxalate is required for growth. A small amount of acetate (0.5 mM) is also required. Oxalate is decarboxylated to formate plus CO2in nearly equimolar amounts. Experiments were conducted to determine which potential carbon sources (oxalate, acetate, formate, CO2) were assimilated by Oxalobacter formigenes and which metabolic pathways were operative in carbon assimilation. Measurements of the specific activities of total cell carbon after growth with different14C-labeled precursors indicated that at least 54% of the total cell carbon was derived from oxalate and at least 7% was derived from acetate. Carbonate was also assimilated, but formate was not a significant source of cell carbon. Labeling patterns in amino acids from cells grown in [14C]oxalate or14CO3were different; however, in both cases14C was widely distributed into most cellular amino acids. Carbon from [14C]acetate was less widely distributed and detected mainly in those amino acids known to be derived from α-ketoglutarate, oxaloacetate, and pyruvate. Cell-free extracts contained citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase activities. The labeling observed in amino acids derived from acetate is in agreement with the function of these enzymes in biosynthesis and indicates that the majority of acetate carbon entered into amino acid biosynthesis via well-known pathways.Key words: biosynthesis, carbon assimilation, metabolism.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3