Affiliation:
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Hangzhou Environment Group Co., Ltd., Hangzhou 310022, China
Abstract
Low-strength and highly compressible excavated clayey soils are common in geotechnical engineering, which cannot serve as a bearing stratum and typically end up being disposed of in landfills. Autoclaved aerated concrete powder (AACP) is a lightweight and porous waste material, with its stockpiles rapidly accumulating worldwide. To promote sustainable development in geotechnical engineering, a type of composite admixture consisting of cement and AACP was developed to modify clayey soils in this study. The physical and mechanical properties of untreated and the composite admixture-treated soil samples were investigated via Atterberg limits, compaction, bender element, constraint compression, free swell, and unconfined compressive strength (UCS) tests. The physicochemical and microstructural observations, including soil pH, scanning electron microscopy, and mercury intrusion porosimetry analyses, were conducted to interpret the macroscopic mechanical behaviors. Test results showed that the incorporation of AACP improved the workability of clayey soils, while cement further enhanced their mechanical properties. Hydration compounds primarily filled the voids with a diameter ranging from 0.1 to 1 µm. From the perspective of volume change behavior, 8% cement content was recommended. Shear wave velocity showed a strong correlation with the UCS, demonstrating that the bender element technique was an effective non-destructive tool for assessing the strength of compacted samples.
Funder
National Natural Science Foundation of China
Publisher
Canadian Science Publishing