A novel pipe-segment shear test apparatus: Polypropylene pipe behaviour over sand beds vs element interface tests

Author:

Ge Borui1,Martin Gary2,Dietz Matthew S1,Mylonakis George1,Diambra Andrea1

Affiliation:

1. University of Bristol, 1980, Department of Civil Engineering, Bristol, United Kingdom of Great Britain and Northern Ireland;

2. University of Bristol, 1980, Department of Civil Engineering , Bristol, United Kingdom of Great Britain and Northern Ireland;

Abstract

This paper describes a novel laboratory test apparatus for investigating the axial interaction between pipeline and soil. Contrary to the majority of existing pipe-soil shear rigs, the proposed apparatus applies a relative pipe-soil shear displacement through driving a soil box below an axially restrained pipe segment, which is instrumented to measure the pipe settlement and the axial resistance at the pipe-soil contact surface. Through axial shear tests of polypropylene pipe segment on sand, this paper explores the effect of vertical loads, soil types and densities on the resulting axial resistance and estimates the interface stress evolution. The coefficients of axial resistance obtained from large-scale pipe-soil shear tests are compared to those obtained via planar element interface shear tests with consideration of the wedging effect. Their consistency suggests that, under the low stress levels investigated in this work, the effect of both pipeline curvature and settlement on the resultant data is minor. The agreement provides validation for the novel apparatus to generate high-quality data under controlled conditions for future studies. The findings of this study will also potentially help reduce the uncertainties around subsea pipeline design when linking the interface shear behaviour at element scale to large-scale pipe-soil interaction.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3