Multifidelity-based Gaussian process for quasi-site-specific probabilistic prediction of soil properties

Author:

He Geng-Fu1ORCID,Zhang Pin12ORCID,Yin Zhen-Yu1ORCID,Goh Siang Huat3

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

2. Department of Engineering, University of Cambridge, United Kingdom

3. Department of Civil & Environmental Engineering, National University of Singapore, Singapore

Abstract

Conventional empirical equations for soil properties prediction tend to be site-specific, exhibiting poor reliability and accuracy. Meanwhile, alternative data-driven methods require large datasets for training. To address these issues, this study proposed a novel multifidelity residual neural-network-based Gaussian process (MR-NNGP) modelling framework. A soil property low-fidelity (LF) prediction model is first trained using abundant LF data collected from worldwide sites for generating preliminary estimation. A high-fidelity (HF) model is subsequently trained on sparse HF data from the specific site of interest for calibrating the LF model to make quasi-site-specific predictions. An infinitely wide NN-inspired NNGP is adopted as the baseline algorithm for training LF and HF models. The compression index of clays is selected as an example to examine the capability of the proposed MR-NNGP. The results indicate that the compression index of clays can be well captured by MR-NNGP, exhibiting superior accuracy and reliability compared with one-shot training without using MR modelling and other baseline algorithms such as GP. The MR-NNGP framework alleviates data dependency and improves model performance through hierarchical modelling on relatively simple correlations using a superior algorithm. Unified LF data and efficient hyper-parameter optimization indicate the flexibility for broader applications in various sites worldwide.

Funder

Research Grants Council (RGC) of Hong Kong Special Administrative Region Government

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3