A data driven real-time perception method of rock condition in TBM construction

Author:

Li Xu1,Wu Lei-jie1,Wang Y. J.23,Liu Huan1,Chen Zuyu41,Jing Liu-jie5,Wang Yu6

Affiliation:

1. Beijing Jiaotong University, 47829, Beijing, China;

2. Beijing Jiaotong University, 47829, Beijing, China

3. China Institute of Water Resources and Hydropower Research, 248904, Beijing, China;

4. China Institute of Water Resources and Hydropower Research, 248904, Beijing, Beijing, China,

5. China Railway Engineering Equipment Group Co Ltd, 616637, Zhengzhou, Henan, China;

6. City University of Hong Kong, 53025, Dept of Civil and Architectural Engineering, Hong Kong, Kowloon, Hong Kong, ;

Abstract

In Tunnel boring Machine (TBM) construction, the presence of collapsible rock mass (CRM) can lead to accidents such as collapse and jamming. This study presents a novel CRM early warning strategy based on real-time TBM rock fragmentation data to improve safety and efficiency in CRM conditions. The strategy includes a qualitative classification model and a quantitative probability model for CRM identification. The results indicate that the distribution dissimilarity index β effectively reflect the significance of variables across CRM and non-CRM datasets. Various parameters, including TPI, FPI, WR, and AF, show discriminatory ability between CRM and non-CRM samples. In particular, the CRM-weighted index, which combines the strengths of the individual indices, achieves a distributional dissimilarity index of 1.05, significantly higher than any of the individual indices. The qualitative classification model proves effective in identifying samples from collapse areas, demonstrating ability to identify samples located in adverse geological condition. The quantitative model shows that the probability of CRM is generally higher in adverse geological area samples, particularly in zones where collapse has occurred, with a CRM probability is approaching 1. The proposed strategy provides accurate early warnings to prevent collapse accidents and represents a practical approach to improving the safety and efficiency.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3